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Abstract
We present here a generalized augmented space recursive technique which includes the effects
of diagonal and environmental disorder explicitly: an analytic, lattice translational invariant,
multiple scattering theory for the study of short range ordering in random ternary alloys. Our
generalized augmented space formalism includes atomic correlations over a finite cluster
including short range order (SRO). We propose the augmented space recursion (ASR), a
computationally fast and accurate technique which incorporates configuration fluctuations over
a large local environment. We apply the formalism to a tight-binding linear muffin-tin orbital
(LMTO) study of stainless steel Fe80−xNix Cr20 (x = 14 and 17). We have demonstrated the
effects of short range ordering by calculating the configuration averaged density of states with
and without SRO and with different kinds of cluster environment embedded in an averaged
medium.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The search for successful approaches for the study of
configuration averaging in disordered systems and ones which
go beyond the single-site mean-field approach and include
configuration fluctuations about the mean-field has led to
four different techniques all of which maintain the essential
Herglotz analytic properties and lattice translational symmetry
of the averaged Green function3. They are the augmented
space recursion (ASR) [1, 2], the itinerant coherent potential
approximation (ICPA) [3], the non-local coherent potential
approximation (NL-CPA) [4] and the special quasi-random
structures [5]. In a recent paper [6] we have reviewed all
four of these methods and have concluded that all four give

3 Herglotz analytic properties include: (i) 〈〈G(z)〉〉 has singularities only on
the real z axis. (ii) The imaginary part of sgn[〈〈G(z)〉〉] = −sgn[z] and (iii)
Re〈〈G(z)〉〉 → 1/E as z = E → ±∞.

almost comparable results for the test case of binary Fex Cr1−x

alloys. The first two of these techniques are based on the
augmented space theorem (AST) introduced by one of us [7].
The extension of these ideas to situations where disorder is
partial or there is short ranged order (SRO), with tendencies to
segregate or locally order, have also been proposed [8]. Their
successful application to a series of binary alloy systems has
been described in great detail in a monograph [2]. However,
a larger class of alloys of metallurgical interest involve three
constituents.

This paper is an attempt to extend the ASR and its SRO
generalization to ternary alloys. The possibility of extension
to ternary alloys, indeed to other more complex probability
distributions of Hamiltonian parameters, was implicit in the
formulation of the augmented space theorem [7]. In this paper
we shall look at the ternary distribution in some detail, so that
the implications and strengths of the ASR technique become
evident.
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We shall apply our ASR formulation in conjunction with
the tight-binding linear muffin-tin orbital (TB-LMTO) minimal
basis [10] and combine it with the recursion method of
Haydock et al [11] to study the electronic structure of the
stainless steel alloy Fe66Ni14Cr20. Stainless steels are of
immediate interest to us, not only because of their commercial
interest, but also because extensive experimental work on them
has been carried out at our institution [12–15] and we wish
to develop a computational technique to analyze the available
experimental data.

2. The augmented space formalism for ternary alloys

Since the AST, in particular its formulation for binary alloys,
has been described in great detail in many earlier papers,
we shall introduce here only those salient points which will
be of direct relevance to our generalization to ternary alloys.
Interested readers are referred to the review [2] for further
details.

The first step is the identification of random variables
associated with the effective one electron Hamiltonian
of the Kohn–Sham equation derived within the density
functional approximation. In our case the randomness is
substitutional. There is an underlying crystalline lattice, but
the lattice sites are randomly occupied by the constituent
atoms. Such randomness may be described by random
occupation variables. Suppose {nR} be a collection of discrete
independent random occupation variables, each associated
with a lattice point R. Any physical observable is a function
f ({nR}) of these random variables.

For a substitutional ternary alloy each random variable
nR takes the values 1, 0 and −1 depending on whether the
site labeled by R is occupied by an A, B or C type of atom.
For homogeneous, uncorrelated disorder the probabilities for
taking these values are proportional to their concentrations:
x, y and z. We may decompose the joint probability
distribution of these variables as:

P({nR}) =
∏

R

pR(nR).

Each pR(nR) is a positive definite function and has finite
moments to all orders (Mn = x + (−1)nz � 1 ∀ n > 0).
For simple homogeneous disorder the individual probability
densities themselves are not labeled by R. In more complex
solids, where different sub-lattices may have different kinds of
randomness, the probability densities may be labeled by the
particular sub-lattice the site R belongs to.

For ternary alloys, each occupation variable can have
three possible states |1〉, |0〉 and |1̄〉. These three states span
a configuration space φR of rank 3 corresponding to the
configurations of the variable nR . The configuration space of
the whole set of variables is then � = ∏⊗

R φR .
The AST now associates with each random variable nR a

self-adjoint operator NR ∈ φR such that its eigenvalues are the
values randomly taken by nR and its projected spectral density
is the probability density of that variable:

pR(nR) = xAδ(nR − 1) + xBδ(nR) + xCδ(nR + 1)

= − 1

π
lim
δ→0

Im〈νR
0 | ((nR + iδ)I − NR)−1 |νR

0 〉, (1)

where |νR
0 〉 = √

xA|1〉+√
xB|0〉+√

xC|1̄〉 is a state in φR . We
shall call this the average or reference state in the configuration
space of the site R. Why ‘average’ state? To understand this
we note that |1〉, |0〉 and |1̄〉 are eigenstates of NR , so that the
average of any function f (nR) is the matrix element of the
corresponding operator f̃ (NR) in this average state:

〈〈 f (nR)〉〉 = x f (1) + y f (0) + z f (−1) = 〈νR
0 | f̃ (NR)|νR

0 〉.

We define the average or reference state |ν0〉 in product
space � of configurations of all sites as |ν0〉 = ∏⊗

R |νR
0 〉.

The other two mutually orthogonal states, which together
with the average state span φR , represent local configuration
fluctuations at the site R about it. If we start with |νR

0 〉 we may
generate these other two by a recursive procedure:

|νR
n+1〉 = NR |νR

n 〉 − αn+1|νR
n 〉 − β2

n |νR
n−1〉

n = 0, 1 β2
0 = 0.

The coefficients αn and βn are obtained from the
orthogonalization of the basis:

α1 = (xA − xC) α2 = N2
1

[
(xA − xC)(x2

B − 4xAxC)
]

β2
0 = 0 α3 = xB(xA − xC)

−xA − xC + (xA − xC)2
β2

1 = 1

N2
1

1

N2
1

= (xA + xC) − (xA − xC)2

β2
2 = xB + xB(xA − xC)

(xA + xC) − (xA − xC)2

×
[
(xA − xC) − xB(xA − xC)

(xA + xC) − (xA − xC)2

]
.

The other members of the orthonormal basis are:

|νR
1 〉 = N1

[√
xA(1 − xA + xC)|1〉 − √

xB(xA − xC)|0〉
− √

xC(1 + xA − xC)|1̄〉]

= h1|1〉 + h2|0〉 + h3|1̄〉
|νR

2 〉 = √
xA

[
1 + a − (xA − xC)xB N2

1

] |1〉 + a
√

xB|0〉 + . . .

+ √
xC

[
1 + a + (xA − xC)xB N2

1

] |1̄〉
= g1|1〉 + g2|0〉 + g3|1̄〉

with

a = (xA − xC)2(xB N2
1 − 1) − 1

N2
1

1

N2
2

= xB
[
(xA + xC) − (xA − xC)2xB N2

1

]
.

(2)

The probability density p(nR) has a continued fraction
expansion:

p(nR) = − 1

π
lim
δ→0

Im

[
xA

z − 1
+ xB

z
+ xC

z − 1

]

= − 1

π
lim
δ→0

Im
1

z − α1 − β2
1

z−α2− β2
2

z−α3

where z = nR + iδ.
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The representation of the self-adjoint operator NR in the
above basis is a tri-diagonal matrix:

N
R

=
(

α1 β1 0
β1 α2 β2

0 β2 α3

)
.

The augmented space theorem [7] states that the
configuration average of the function f ({nR}) is a matrix
element of the operator f̃ (ÑR) in the configuration space �

obtained by replacing each random variable in f ({nR}) by its
corresponding operators {ÑR}. The matrix element is taken
between the reference states:

〈〈 f ({nR})〉〉 = 〈ν0| f̃ ({Ñ (R)})|ν0〉, (3)

where

Ñ (R) = I ⊗ I ⊗ · · · NR ⊗ · · · ⊗ I ⊗ · · · .

The operator ÑR in the basis described above, is given
by [9]:

NR = α1P0
R + α2P1

R + α3P2
R + β1T 01

R + β2T 12
R

Ñ (R) = α1P̃0
R + α2P̃1

R + α3P̃2
R + β1T̃ 01

R + β2T̃ 12
R .

(4)

We shall denote the average state |ν0〉 ≡ ∏⊗
R |{νR

0 }〉 with the
notation |{∅}〉. Any other configuration state is labeled by its
cardinality sequence:

|{C1} ≡ {Ri},

{C2} ≡ {R j}〉 =
∏

{Ri }
|νRi

1 〉 ⊗
∏

{R j }
|νR j

2 〉 ⊗
∏

R �={Ri }⊕{R j }
|νR

0 〉.

The configuration states |{C1}, {C2}〉 span the full configuration
space � = ∏⊗

φR .
Here, P̃ j

R = I ⊗ . . . P j
R ⊗ · · · ( j = 0, 1, 2) are the

projection operators with P j
R = | jR〉〈 jR| and T̃ j j ′

R = I ⊗
· · · T j j ′

R ⊗· · · ( j �= j ′ = 0, 1, 2) are the transfer operators with

T j j ′
R = (| jR〉〈 j ′

R|+| j ′
R〉〈 jR|) in the configuration space �. T̃ 01

R
either creates a configuration fluctuation at R in the ‘average’
state or destroys one from the state with one fluctuation, T̃ 12

R
creates a fluctuation at R in the state with one fluctuation or
destroys a fluctuation, at R, in a state with two and T̃ 02

R creates
two fluctuations at R in the average state or destroys two, at R,
in the state with two fluctuations.

Unlike the corresponding operator for binary randomness,
NR is not idempotent i.e. MR = N2

R �= NR . The representation
of MR in the same basis is:

MR =
( A1 B12 B13

B12 A2 B23

B13 B23 A3

)
(5)

with
A1 = α2

1 + β2
1 , A2 = α2

2 + β2
1 + β2

2

A3 = α2
3 + β2

2 B12 = (α1 + α2)β1

B13 = β1β2 B23 = (α3 + α2)β2.

The operator M̃R in the basis chosen then becomes:

M̃R = A1P̃0
R + A2P̃1

R + A3P̃2
R + B12T̃ 01

R + B13T̃ 02
R + B23T̃ 12

R .

Any random local potential parameter X R now can be
expressed in terms of nR as:

X R = 1
2 nR(1+nR)XA+(1−nR)(1+nR)XB+ 1

2 nR(nR −1)XC

(6)
where XA, XB, XC are the values taken by X R corresponding
to the random variable nR having the value 1, 0,−1
respectively. Replacing nR by the corresponding operator NR ,
and n2

R by MR , X R is replaced by an operator X̃ R in the
‘configuration’ space spanned by the ‘configuration’ states of
NR and can be written as:

X̃ R = 1
2 (M̃R + ÑR)XA + ( Ĩ − M̃R)XB + 1

2 (M̃R − ÑR)XC

= X1Ĩ + X2P̃0
R + X3P̃1

R + X4P̃2
R + X5T̃ 01

R

+ X6T̃ 12
R + X7T̃ 02

R (7)

here
X1 = XB

X2 = 1
2 [α1(XA − XC) + (XA − 2XB + XC)A1]

X3 = 1
2 [α2(XA − XC) + (XA − 2XB + XC)A2]

X4 = 1
2 [α3(XA − XC) + (XA − 2XB + XC)A3]

X5 = 1
2 [β1(XA − XC) + (XA − 2XB + XC)B12]

X6 = 1
2 [(XA − 2XB + XC)B13]

X7 = 1
2 [β2(XA − XC) + (XA − 2XB + XC)B23].

The projection operators essentially count the number of
configuration fluctuations locally at sites R and the transfer
operators create or annihilate configuration fluctuations, again
locally.

For solution of the Kohn–Sham equations we shall use
the representation of the effective density functional (DFT)
Hamiltonian in the TB-LMTO basis. The TB-LMTO basis
is appropriate for us since it leads to a sparse Hamiltonian
representation and we shall use the recursion method of
Haydock [11] to calculate the Green function. The equation (7)
gives us a prescription of how to set up the augmented
space operators corresponding to the random local potential
parameters Eν

L , CRL ,	
1/2
RL and oRL . The second order

Hamiltonian has the form:

H̃ = Ẽν + h̃ − h̃õh̃

h̃ =
∑

R

(
C̃

R
− Ẽ

ν
)

⊗ PR +
∑

R,R′

(
	̃

1/2

R
S̃

R,R′	̃
1/2

R′

)
⊗ TR R′

õ =
∑

R

õ
R

⊗ PR

(8)

3
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where the matrix operators are matrices in angular momentum
space labeled by L, which is the composite index (
mσ). PR

and TRR′ are projection and transfer operators respectively in
the Hilbert space H spanned by the ‘tight-binding’ basis {|R〉}.
C̃RL , Ẽν

L , õRL and 	̃
1/2
RL are operators in the configuration space

of nR and have the same form as X̃ R described above. The
Hamiltonian is a function of a whole set of random variables
{nR}, one for each site. Usually the structure matrix SRL ,R′L ′

is not random and S̃RL ,R′ L ′ = 〈〈SRL ,R′ L ′ 〉〉I . However, if the
atomic size differences between the three constituents are large
there can be significant local lattice distortions which lead to
off-diagonal disorder in the structure matrix.

In such a situation, the diagonal term of the structure
matrix can be expressed as:

SRL ,RL = nR(nR + 1)

2
SAA

RL ,RL + (1 − n2
R)SBB

RL ,RL

+ nR(nR − 1)

2
SCC

RL ,RL (9)

and the off-diagonal term as:

SRL ,R′ L ′ = nRnR′(nR + 1)(nR′ + 1)

4
SAA

RL .R′L ′

+ (1 − n2
R)(1 − n2

R′)SBB
RL ,R′ L ′ · · ·

· · · + nRnR′(nR − 1)(nR′ − 1)

4
SCC

RL ,R′ L ′ · · ·

· · · +
[

nR(nR + 1)(1 − n2
R′)

2

+ nR′(1 − n2
R)(nR′ + 1)

2

]
SAB

RL .R′L ′ · · ·

· · · + nRnR′

4

[
(nR + 1)(nR′ − 1)

+ (nR − 1)(nR′ + 1)
]
SAC

RL .R′ L ′ · · ·
· · · +

[
(1 − n2

R)(nR′ − 1)

2
nR′

+ (nR − 1)(1 − n2
R′)

2
nR

]
SBC

RL ,R′ L ′ . (10)

Replacing nR by the corresponding operator ÑR and n2
R

by M̃R , we get for the lattice space diagonal term:

S̃RL ,RL = SBB
RL ,RL Ĩ + S(1)

RL ,RL M̃R + S(2)

RL ,RL ÑR . (11)

These operators either count or create/annihilate configu-
ration fluctuations locally at sites R. For the off-diagonal terms
we get:

S̃RL ,R′ L ′ = SBB
RL ,R′ L ′ Ĩ + S(3)

RL ,R′ L ′(M̃R + M̃R′ )

+ S(4)
RL ,R′ L ′(ÑR + ÑR′ ) + · · ·

· · · S(5)

RL ,R′ L ′ M̃R ⊗ M̃R′ + S(6)

RL ,R′L ′(M̃R ⊗ ÑR′

+ ÑR ⊗ M̃R′ ) + S(7)
RL ,R′ L ′ ÑR ⊗ ÑR′ (12)

where

S(1)

RL ,R′ L ′ = 1
2 (SAA

RL ,R′ L ′ + SCC
RL ,R′ L ′ − 2SBB

RL ,R′ L ′)

S(2)
RL ,R′ L ′ = 1

2 (SAA
RL ,R′ L ′ − SCC

RL ,R′ L ′)

S(3)
RL ,R′ L ′ = 1

2 (SAB
RL ,R′ L ′ + SBC

RL ,R′ L ′ − 2SBB
RL ,R′ L ′)

S(4)

RL ,R′ L ′ = 1
2 (SAB

RL ,R′ L ′ − SCB
RL ,R′ L ′)

S(5)
RL ,R′ L ′ = 1

4 (SAA
RL ,R′ L ′ + 4SBB

RL ,R′ L ′ + SCC
RL ,R′ L ′

− 4SAB
RL ,R′ L ′ + 2SAC

RL ,R′ L ′ − 4SBC
RL ,R′ L ′)

S(6)
RL ,R′ L ′ = 1

4 (SAA
RL ,R′ L ′ − SCC

RL ,R′ L ′ − 2SAB
RL ,R′ L ′ + 2SBC

RL ,R′ L ′)

S(7)

RL ,R′ L ′ = 1
4 (SAA

RL ,R′ L ′ + SCC
RL ,R′ L ′ − 2SAC

RL ,R′ L ′).

(13)

It is easy to check that all the factors above vanish
when the structure matrices are independent of site occupation
(i.e. not random). The operators in the first two lines of
equation (12) either count or create/annihilate configuration
fluctuations at either of the two sites R and R′. The last
four operators in the third and fourth lines of equation (12)
either count or create/annihilate configuration fluctuations
simultaneously at both the sites R and R′. These operators are
essentially non-local and cannot be dealt with in a local (single-
site) mean-field approximation. The augmented Hamiltonian
H̃ is an operator in the augmented space � = H ⊗ �.

The augmented space theorem [7] tells us:

〈〈 f [H ({nR})]〉〉 = 〈{∅}| f [H̃({ÑR, M̃R})]|{∅}〉. (14)

We may now combine the above with the recursion
method of Haydock et al [11] and obtain the configuration
averaged Green function as a continued fraction using the same
technique as for binary alloys [6].

〈〈G RL ,RL (z)〉〉 = 〈RL ⊗ {∅}|(z Ĩ − H̃)−1|RL ⊗ {∅}〉
= 1

z − a1 − b2
1

z−a2− b2
2

z−a3− b2
3

...z−aN −T (z)

. (15)

The terminator T (z) is estimated from the initial
coefficients {an, bn}, 1 � n � N − 1 using the ideas of
Beer and Pettifor [16]. The density of states per atom is then
obtained from

〈〈n(E)〉〉 = lim
δ→0

[
− 1

Nπ

∑

RL

Im〈〈G RL ,RL (E + iδ)〉〉
]

= lim
δ→0

[
− 1

π

∑

L

Im〈〈G RL ,RL (E + iδ)〉〉
]

.

The second line follows only if the disorder is
homogeneous and the averaged Green function is lattice
translation invariant or independent of the R index.

The local charge densities in atomic spheres around
specific atom types ρA(�r), ρB(�r) and ρC(�r) are obtained from
the energy moments of atom-projected densities of states
nA(E), nB(E) and nC(E). These are obtained as described
above, except for the Hamiltonians similar to (7) but with

4
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potential parameters C̃R′ L and 	̃
1/2
R′L being the same as before

unless R′ = R when they are CA
RL , CB

RL or CC
RL and 	

1/2A
RL ,

	
1/2B
RL or 	

1/2C
RL . These local charge densities are inputs into the

density functional self-consistency loop, which then produces
the self-consistent potential parameters, starting from the pure
atomic potential parameters to those of the atom immersed
in the disordered alloy. The Madelung energy is obtained
according to the prescription given by Ruban and Skriver [17].

2.1. Augmented space formalism with SRO

Let us now turn to a problem in which the variables {nR}
are correlated. Mookerjee and Prasad [8] have proposed a
formulation based on the augmented space technique which
takes into account correlated disorder in binary alloys. We
shall now propose a generalization to ternary alloys. If we
choose any site R0 and suppose that nR0 is correlated with the
neighboring {nRk } k = 1, 2, . . . , p, then the joint probability
distribution of all the variables can be expanded as

P(nR0 , nR1 , . . . , nRp , nRp+1 , . . .)

= p(nR0)

p∏

k=1

p(nRk |nR0 , . . . nRk−1 )

∞∏

k>p

p(nRk ) · · · .

Note that if the SRO is itself homogeneous, it is immaterial
which site we choose as R0. Lattice translational symmetry is
still valid in the full augmented space � = H ⊗ �, where
H is the Hilbert space spanned by the basis |R〉. This is
schematically shown in figure 1.

The representation of the operator associated with the
random variable nR0 corresponding to the probability density
p(nR0) is given by equation (4).

Let us now come to the variables nRk , k = 1, 2, . . . , p
which are correlated to nR0 but not to one another. We
now have to deal with the conditional probability densities
depending on the value taken by the variable nR0 . For each
such value taken by nR0 , we associate the corresponding
conditional probability density p(nRk |nR0 = j), where j =
0, 1 or 2. Since the conditional probability densities are also
positive definite and assumed to have finite moments to all
orders, we may associate with them operators N ( j)

Rk
such that

p(nRk |nR0 = j)

= − 1

π
lim
δ→0

Im〈νRk
0 |

(
(nRk + iδ)I − N ( j)

Rk

)−1 |νRk
0 〉.

The operator Ñ(Rk ) we wish to associate with the variable
nRk should be that M ( j)

Rk
which corresponds to the particular

configuration j which nR0 takes. A natural generalization then
takes the form

ÑRk =
∑

j

P( j)
R0

⊗ N ( j)
Rk

⊗ I ⊗ I ⊗ · · · (16)

where P( j)
R0

are the projection operators which project onto the
eigenstates | j〉 of MR0 .

The operators associated with all further sites Rp+1 are
the same as equation (4), as they are uncorrelated with R0. The

Figure 1. The translational symmetry for homogeneous SRO. The
plaquettes shown have correlated site occupation.

basic augmented space theorem still holds good rigorously, but
ÑRk , instead of being of the form given by equation (4), now
has the form given by equation (16). For electronic structure
calculations in a disordered system, f is chosen to be the
matrix element of the Green function (z I − H )−1, where H
describes the random Hamiltonian of the system and nR are
the site occupation variables.

The construction of different operators in augmented
space associated with the site occupation variables for
correlated disorder in binary alloys has already been discussed
in detail by Mookerjee and Prasad [8]. Here and in the
following we shall derive a similar theory of correlated disorder
for random ternary alloys which is not a trivial generalization
of the previous theory.

For a ternary alloy the SRO is described by three distinct
Warren–Cowley parameters αAB, αBC and αAC which describe
pair correlations between occupations of the three distinct pairs
of components. If Pλλ′

is the probability of the central site R0

being occupied by a λ type atom and the site Rk being occupied
by a λ′ type atom, then by definition:

PAB = xB(1 − αAB) PAC = xC(1 − αAC)

PAA = 1 − (PAB + PAC) = (xA + xBαAB + xCαAC)

where xA + xB + xC = 1.
The conditional probability densities p(nRk |nR0 = j)

( j = 1, 0,−1) associated with the sites belonging to the first
nearest neighbor shell can be expressed in terms of the Warren–
Cowley SRO parameters as

p(nRk |nR0 = j) = X ( j)
A δ(nRk − 1) + X ( j)

B δ(nRk )

+ X ( j)
C δ(nR2 + 1) (17)

where

X (1)
A = xA + (xBαAB + xCαAC) X (1)

B = xB(1 − αAB)

X (i)
C = xC(1 − αAC) X (0)

A = xA(1 − αAB)

X (0)
B = xB + (xAαAB + xCαBC) X (0)

C = xC(1 − αBC)

X (1̄)
A = xA(1 − αAC) X (1̄)

B = xB(1 − αBC)

X (1̄)

C = xC + (xAαAC + xBαBC).
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When there is no SRO i.e. αAB = αBC = αAC =
0, the conditional probabilities of the second variable nRk

become identical to the unrestricted probability density of the
variable nR0 . Since we have chosen to include conditional
probabilities which incorporate pairwise correlations alone,
these are the only correlation coefficients in the model. Three
site correlations would have required further such parameters:
α(A,BC), α(B,AC), α(C,AB) and α(ABC). These we have ignored in
our present model.

The representation of the conditional operators are
(compare with equation (4)):

N ( j)
Rk

= a( j)
1 P0

Rk
+a( j)

2 P1
Rk

+a( j)
3 P2

Rk
+b( j)

1 T 01
Rk

+b( j)
2 T 12

Rk
(18)

where
a( j)

1 = (X ( j)
A − X ( j)

C );

b( j)
1

2 = (X ( j)
A + X ( j)

C ) − (X ( j)
A − X ( j)

C )2;

a( j)
2 = a( j)

1 X ( j)
B

b( j)
1

2 − a( j)
1

b( j)
2

2 = X ( j)
B − X ( j)

B a( j)
2 a( j)

3

b( j)
1

2 ;

a( j)
3 = −a( j)

2 − a( j)
1 .

In equation (16) we also require representations of
the projection operators P( j)

R0
. The representation of these

operators in the basis of eigenfunctions of ÑR0 are very simple:

( 1 0 0
0 0 0
0 0 0

) ( 0 0 0
1 0 0
0 0 0

) ( 0 0 0
0 0 0
1 0 0

)
.

However, all our representations so far have been in the
basis in which MR0 was tri-diagonal. This basis |νR0

0 〉, |νR0
1 〉

and |νR0
2 〉 may be generated by a recursion, as described before.

We refer back to the generation of the orthogonal basis in φR

and obtain the orthogonal transformation matrix between the
eigenstates of MR0 and the basis in which that operator is tri-
diagonal:

( |ν0〉
|ν1〉
|ν2〉

)
= U

( |1〉
|0〉
|1̄〉

)
U =

(√
xA

√
xB

√
xC

h1 h2 h3

g1 g2 g3

)
.

Thus any operator Q whose representation in the basis of
eigenfunctions is known can be transformed to the other basis
via: Q′ = U † · Q · U

The representations of the projection operators in this new
basis are then:

P(1)
R0

=
( xA

√
xAxB

√
xAxC√

xAxB xB
√

xBxC√
xAxC

√
xBxC xC

)

P(0)

R0
=

( h2
1 h1h2 h1h3

h1h2 h2
2 h2h3

h1h3 h2h3 h2
3

)

and

P(1̄)
R0

=
( g2

1 g1g2 g1g3

g1g2 g2
2 g2g3

g1g3 g2g3 g2
3

)
.

Explicit expressions for the operators Ñ(Rk ) are given in
the appendix. Unlike the operators for the case without SRO,
which creates or annihilates a configuration fluctuation only
at the site Rk , now the generalized operator not only creates
or annihilates a configuration fluctuation at the site Rk , but
also one at the correlated site R0. In addition it also creates
or annihilates two configuration fluctuations simultaneously at
the sites Rk and R0. In this sense, SRO introduces off-diagonal
disorder, which single-site mean-field approaches cannot take
care of without further approximations.

3. Results and discussion

The first application of the formalism developed in section 2
will be to the stainless steel alloy Fe66Ni14Cr20. The upper
panels of figure 2 show the atom-projected density of states of
stainless steel (left) and the total density of states (right), which
is their concentration weighted sum. The alloy is in a face-
centered cubic structure and the lattice constant is taken to be
that at which the total energy is a minimum. The lower panel
shows the density of states of pure Fe, Ni and Cr in the same
face-centered cubic lattice as the alloy and with the same lattice
constant (left) and their concentration weighted sum (right).
The lower panels are shown in order to compare these densities
of states with those for the fully disordered alloy, in order to
analyze the results. We note the following features:

(i) The energy spectra of Fe and Ni have considerable
overlap, while both have much smaller overlap with the
spectrum of Cr. FeCr and NiCr form ‘split band’ alloys,
while FeNi structures overlap and hybridize considerably.
The ternary alloy should show all these features.

(ii) The main structure in the density of states of the alloy has
its origin in those of the individual constituents Fe, Ni and
Cr.

(iii) It is known that alloying non-iso-electronic constituents
lead to charge transfer between them. One of the
consequences of charge transfer is the shifting of band
centers. Comparison between the left and right panels
shows that the Cr spectrum is pushed to higher energies,
while those of Fe and Ni are pushed lower.

(iv) One of the main effects of disorder induced scattering
of Bloch-like electron states in ordered systems is the
smoothing out of the sharp structures in the density of
states. This ‘smoothing’ is the result of the imaginary
part of the self-energy which arises because of scattering
by configuration fluctuations. Such smooth structures are
evident in our results. The real part of the self-energy
leads to the shifting of the energy spectrum, described in
section 2. However, the self-energy is sufficiently small
so that the main structures of the partial (atom-projected)
density of states are preserved.

The effect of composition variation of the alloy on
the densities of states is shown in figure 3. Here we
show the partial (atom-projected) and total densities of states
for two other alloy compositions: Fe0.05Ni0.05Cr0.99 and
Fe0.99Ni0.05Cr0.05. In the case (shown in the top panel of
figure 3) where Fe and Ni are almost dilute impurities in

6
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Figure 2. Top panel: the atom-projected or partial (left) and total (right) densities of states of the Fe66Ni14Cr20 alloy. The color scheme is as
follows: the red curve stands for Fe-projected, blue curve for Ni-projected, green curve for Cr-projected and the black curve for total density
of states of the alloy. The vertical dashed line marks the position of the Fermi level (EF). Bottom panel: the densities of states of pure Ni, Fe
and Cr superposed on one another (left) and their concentration weighted average (right).

Cr, their densities of states are narrower than stainless steel
composition. This is characteristic of impurity like bands in a
nearly split band situation. When Fe is the main constituent
and Ni and Cr are in dilution, the hybridization between the
bands arising out of the constituents is much stronger and the
partial density of states is much smoother than in the previous
example.

The next application is to study the effect of short ranged
order on the electronic structure of stainless steel. We shall
use our pairwise correlated model. The accompanying table 1
explains the consequences of specific triads of values of the
three Warren–Cowley parameters.

We have chosen a few specific examples, where the
physical interpretation is simple. For example, the first choice
is αAB = 1, αAC = 1 and αBC = 0. Here, in the alloy A
atoms do not like to sit next to either B or C atoms. The
alloying between B and C is, on the other hand, random
without any tendency either to segregate or order. In this
alloy, then, the A component tends to segregate out of the
perfectly random BC alloy component. In the leftmost frame
of the top row of figure 4 we show the density of states
for this example. Next to it, for comparison, we show the

Table 1. Specific cases of Warren–Cowley parameters and their
interpretation.

αAB αAC αBC Type of correlation Example

1 1 0 BC alloyed, A segregated NiCr–Fe
1 0 1 AC alloyed, B segregated FeCr–Ni
0 1 1 AB alloyed, C segregated FeCr–Cr
1 0 0 AC, BC alloyed but

pairwise segregated
FeCr–NiCr

0 1 0 AB, BC alloyed but
pairwise segregated

FeNi–NiCr

0 0 1 AB, AC alloyed but
pairwise segregated

FeNi–FeCr

1 1 1 A, B, C all segregated Fe–Ni–Cr

density of states of pure Fe (in a face-centered cubic lattice
with the same lattice constant as the ternary alloy) and that
of ordered NiCr, again in a face-centered cubic lattice with
the same lattice constant as the ternary alloy. This ordered
alloy is equi-atomic and hence in an L10 configuration. The
comparison clearly indicates the origin of the two peaked
structures in the configuration averaged density of states. The
higher peak around −0.2 Ryd arises out of contributions both

7
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Figure 3. Top panel (left): the partial or atom-projected densities of states for the Fe0.05Ni0.05Cr0.99 disordered alloy. Top panel (right): the
total density of states for Fe0.05Ni0.05Cr0.99. Bottom panel: the same as shown for Fe0.99Ni0.05Cr0.05.

from segregated Fe and the Ni partial density of states of the
NiCr alloy, while the peak around 0.2 Ryd comes from the Cr
partial density of the NiCr alloy. We see both the structure
shifting due to charge transfer on alloying and broadening due
to scattering by configuration fluctuations. The next frame on
the top row shows the situation where B (Ni) segregates from
a random AC (FeCr) binary component. The structure is now
rather different, with a two peaked structure with equal weights
arising out of the FeCr alloy and a lower energy structure
around −0.4 Ryd arising out of the segregated Ni component.
This Ni structure showed up as a shoulder around −0.4 Ryd in
the first example as well, however here it is more prominent.
This is because the structure of a segregated Ni atom sitting
in an FeCr environment is much more pronounced than the
equivalent structure in an NiCr alloy.

At a first glance most of the densities of states shown in
figure 4 appear to be of two specific types. Their differences in
structure are not immediately visually apparent. A more subtle
analysis of these differences is through the energy moment
functions of the densities of states:

Mn(E) =
∫ E

−∞
dE ′ E ′nn(E ′).

The second moment (n = 2) tells us how spread out the
density of states is about its mean value. The fourth moment
(n = 4) tells us about the kurtosis of the energy distribution.
These characteristics are standard in the analysis of the shapes
of distribution functions and help to carefully distinguish
between almost similar shapes. It will be interesting to note
that the analysis of the ‘convergence’ of the recursion method
which is linked to the convergence of the shape of the density
of states is also related to the convergence of these moment

functions (Haydock [18]). These energy moment functions are
shown in figure 5.

We note that the second moment functions are arranged as
follows M2(110) < M2(101) < M2(011). This reflects the
fact that for example, the lowest moment is for Fe segregated
from an NiCr random alloy. The main spread comes from
the NiCr structure. Segregated Fe has states which hybridize
with that of the Ni partial density in NiCr, producing simply
a shoulder in the structure. The next higher moment occurs
for Ni segregated from a random FeCr alloy. The segregated
Ni states are rather more separated from the two peaked
FeCr structure, producing a much more pronounced ‘impurity’
structure at around −0.4 Ryd. This three peaked structure has a
larger energy spread. Finally the highest moment in this series
is for Cr segregated in a FeNi alloy. Fe and Ni bands overlap
considerably, whereas Cr bands are split from the FeNi ones.
Segregated Cr states then form sharp ‘impurity’ structures
which make the spread for this example the highest. Second
moments for the other examples can be discussed similarly.
Here M2(100) < M2(010) < M2(001).

The fourth moment measures kurtosis or the sharper than
Gaussian ‘localization’ of the distribution shape. For the first
three examples M4(110) < M4(101) < M4(011). The
kurtosis for any ‘impurity’ like split band is usually much
larger than a wide hybridized band. This is reflected in the
above inequality.

4. Conclusion

In this paper we have proposed a methodology to study
the electronic structure of random ternary alloys. This is a

8
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Figure 4. Densities of states for various values of the Warren–Cowley parameters for the ternary alloy. The averaged densities of states are
compared with the densities of states of the pure constituents and the corresponding ordered binary alloys. The label (1-1-0) refers to
αAB = 1, αAC = 1 and αBC = 0. Top panel, second and fourth graphs: dashed curves refer to NiCr and full curves to Fe or Ni, respectively.
Second panel, second and fourth graphs: dashed curves refer to FeNi and NiCr and full curves to Cr and NiCr, respectively. Third panel,
second and fourth graphs: dashed curves refer to NiCr and FeCr and full curves to FeNi in both graphs. Bottom panel, second graph: full
curve refers to Ni, dashed to Fe and dashed–dotted to Cr.

generalization of the density functional self-consistent tight-
binding linear muffin-tin orbital augmented space recursion
(TB-LMTO-ASR) for random binary alloys. We have also

indicated, in detail, how to incorporate short range order in
the ternary alloys through binary correlations between the
constituents. The implementation of the methodology, which
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Figure 5. Second and fourth energy moments of the density of states for the examples shown in figure 4.

takes into account the effect of configuration fluctuations
beyond those for the coherent potential approximation and
based on the ASR maintains the necessary symmetry
properties and analyticities of the configuration averaged
Green functions, is certainly feasible. We have applied our
method to the stainless steel alloy and two other compositions
in the Fe–Ni–Cr ternary series. In this paper we have not
analyzed magnetism in stainless steel. This analysis, which
may involve the study of non-collinear magnetism and spin-
glass like phases, we shall keep for a later communication.
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Appendix

An explicit expression for the operator ÑRk can be given here:

ÑRk =
[

P(1)
R0

⊗ N (1)
Rk

+ P(0)
R0

⊗ N (0)
Rk

+ P(1̄)
R0

⊗ N (1̄)
Rk

]
⊗ I⊗ · · ·

= [
V1 Ĩ + V2 P̃1

R0
+ V3P̃2

R0
+ V4P̃0

Rk
+ V5P̃2

Rk
+ V6T̃ 01

R0

+ V7T̃ 12
R0

+ · · · + V8T̃ 02
R0

+ V9T̃ 01
Rk

+ V10T̃ 12
Rk

+ V11P̃0
R0

⊗ P̃0
Rk

+ V12P̃0
R0

⊗ P̃2
Rk

+ · · · + V13P̃2
R0

⊗ P̃0
Rk

+ V14P̃2
R0

⊗ P̃2
Rk

+ V15P̃0
R0

⊗ T̃ 01
Rk

+ V16P̃0
R0

⊗ T̃ 12
Rk

+ · · ·
+ V17P̃2

R0
⊗ T̃ 01

Rk
+ V18P̃2

R0
⊗ T̃ 12

Rk
+ V19T̃ 01

R0
⊗ P̃0

Rk

+ V20T̃ 01
R0

⊗ P̃2
Rk

+ · · · + V21T̃ 12
R0

⊗ P̃0
Rk

+ V22T̃ 12
R0

⊗ P̃2
Rk

+ V23T̃ 02
R0

⊗ P̃0
Rk

+ V24T̃ 02
R0

⊗ P̃2
Rk

+ · · ·
+ V25T̃ 01

R0
⊗ T̃ 01

Rk
+ V26T̃ 01

R0
⊗ T̃ 12

Rk
+ V27T̃ 12

R0
⊗ T̃ 01

Rk

+ V28T̃ 12
R0

⊗ T̃ 12
Rk

+ · · · + V29T̃ 02
R0

⊗ T̃ 01
Rk

+ V30T̃ 02
R0

⊗ T̃ 12
Rk

]
. (19)

The different coefficients Vi; i = 1, 30 are given in terms
of xA, xB, xC, h1, h2, h3, g1, g2, g3, a( j)

1 , a( j)
2 , a( j)

3 , b( j)
1 and b( j)

2
as

V1 = xBa(1)
1 + h2

2a(2)
1 + g2

2a(3)
1

V2 = x1a(1)
1 + hx1 a(2)

1 + gx1 a(3)
1

V3 = x2a(1)

1 + hy1a
(2)

1 + gy1a
(3)

1

V4 = xBd1 + h2
2 dx1 + g2

2 dx2

V5 = xBd2 + h2
2 dy1 + g2

2 dy2

V6 = √
xAxBa(1)

1 + h1h2a(2)

1 + g1g2a(3)

1

V7 = √
xBxCa(1)

1 + h2h3a(2)
1 + g2g3a(3)

1

V8 = √
xCxAa(1)

1 + h3h1a(2)
1 + g3g1a(3)

1

V9 = xBb(1)

1 + h2
2b(2)

1 + g2
2b(3)

1

10
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V10 = xBb(1)

2 + h2
2b(2)

2 + g2
2b(3)

2

V11 = x1d1 + hx1 dx1 + gx1 dx2

V12 = x1d2 + hx1 dy1 + gx1 dy2

V13 = x2d1 + hy1 dx1 + gy1 dx2

V14 = x2d2 + hy1 dy1 + gy1 dy2

V15 = x1b(1)
1 + hx1 b(2)

1 + gx1 b(3)
1

V16 = x1b(1)
2 + hx1 b(2)

2 + gx1 b(3)
2

V17 = x2b(1)

1 + hy1b
(2)

1 + gy1b
(3)

1

V18 = x2b(1)

2 + hy1b
(2)

2 + gy1b
(3)

2

V19 = √
xAxBd1 + h1h2 dx1 + g1g2 dx2

V20 = √
xAxBd2 + h1h2 dy1 + g1g2 dy2

V21 = √
xBxCd1 + h2h3 dx1 + g2g3 dx2

V22 = √
xBxCd2 + h2h3 dy1 + g2g3 dy2

V23 = √
xCxAd1 + h3h1 dx1 + g3g1 dx2

V24 = √
xCxAd2 + h3h1 dy1 + g3g1 dy2

V25 = √
xAxBb(1)

1 + h1h2b(2)

1 + g1g2b(3)

1

V26 = √
xAxBb(1)

2 + h1h2b(2)

2 + g1g2b(3)

2

V27 = √
xBxCb(1)

1 + h2h3b(2)
1 + g2g3b(3)

1

V28 = √
xBxCb(1)

2 + h2h3b(2)
2 + g2g3b(3)

2

V29 = √
xCxAb(1)

1 + h3h1b(2)

1 + g3g1b(3)

1

V30 = √
xCxAb(1)

2 + h3h1b(2)

2 + g3g1b(3)

2

here,

x1 = xA − xB x2 = xC − xB d1 = a(1)
1 − a(1)

2

d2 = a(1)

3 − a(1)

2 hx1 = h1 − h2 hy1 = h3 − h2

dx1 = a(2)
1 − a(2)

2 dy1 = a(2)
3 − a(2)

2 gx1 = g1 − g2

gy1 = g3 − g2 dx2 = a(3)

1 − a(3)

2 dy2 = a(3)

3 − a(3)

2 .

(20)
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